Scrabble?! PERMUTAT
Is permutat valid for Scrabble? Words With Friends? Lexulous? WordFeud? Other games?Definitions of PERMUTAT in various dictionaries:
In mathematics, the notion of permutation relates to the act of arranging all the members of a set into some sequence or order, or if the set is already ordered, rearranging (reordering) its elements, a process called permuting. These differ from combinations, which are selections of some members of a set where order is disregarded. For example, written as tuples, there are six permutations of the set {1,2,3}, namely: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1). These are all the possible orderings of this three element set. As another example, an anagram of a word, all of whose letters are different, is a permutation of its letters. In this example, the letters are already ordered in the original word and the anagram is a reordering of the letters. The study of permutations of finite sets is a topic in the field of combinatorics. Permutations occur, in more or less prominent ways, in almost every area of mathematics. They often arise when different orderings on certain finite sets are considered, possibly only because one wants to ignore such orderings and needs to know how many configurations are thus identified. For similar reasons permutations arise in the study of sorting algorithms in computer science. The number of permutations of n distinct objects is n factorial, usually written as n!, which means the product of all positive integers less than or equal to n. In algebra and particularly in group theory, a permutation of a set S is defined as a bijection from S to itself. That is, it is a function from S to S for which every element occurs exactly once as an image value. This is related to the rearrangement of the elements of S in which each element s is replaced by the corresponding f(s). The collection of such permutations form a group called the symmetric group of S. The key to this group's structure is the fact that the composition of two permutations (performing two given rearrangements in succession) results in another rearrangement. Permutations may act on structured objects by rearranging their components, or by certain replacements (substitutions) of symbols. In elementary combinatorics, the k-permutations, or partial permutations, are the ordered arrangements of k distinct elements selected from a set. When k is equal to the size of the set, these are the permutations of the set.
WORD SOLVER
(tip: SPACE or ? for wildcards)WORD FINDER
Anagrammer is a game resource site that has been extremely popular with players of popular games like Scrabble, Lexulous, WordFeud, Letterpress, Ruzzle, Hangman and so forth. We maintain regularly updated dictionaries of almost every game out there. To be successful in these board games you must learn as many valid words as possible, but in order to take your game to the next level you also need to improve your anagramming skills, spelling, counting and probability analysis. Make sure to bookmark every unscrambler we provide on this site. Explore deeper into our site and you will find many educational tools, flash cards and so much more that will make you a much better player. This page covers all aspects of PERMUTAT, do not miss the additional links under "More about: PERMUTAT"