Welcome to Anagrammer Crossword Genius! Keep reading below to see if trivializat is an answer to any crossword puzzle or word game (Scrabble, Words With Friends etc). Scroll down to see all the info we have compiled on trivializat.
trivializat
Searching in Crosswords ...
The answer TRIVIALIZAT has 0 possible clue(s) in existing crosswords.
Searching in Word Games ...
The word TRIVIALIZAT is NOT valid in any word game. (Sorry, you cannot play TRIVIALIZAT in Scrabble, Words With Friends etc)
There are 11 letters in TRIVIALIZAT ( A1I1L1R1T1V4Z10 )
To search all scrabble anagrams of TRIVIALIZAT, to go: TRIVIALIZAT?
Rearrange the letters in TRIVIALIZAT and see some winning combinations
8 letters out of TRIVIALIZAT
5 letters out of TRIVIALIZAT
4 letters out of TRIVIALIZAT
3 letters out of TRIVIALIZAT
Searching in Dictionaries ...
Definitions of trivializat in various dictionaries:
No definitions found
Word Research / Anagrams and more ...
Keep reading for additional results and analysis below.
Trivializat might refer to |
---|
In mathematics, and particularly topology, a Fiber bundle (or, in British English, fibre bundle) is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space E and a product space * * * * B * × * F * * * {\displaystyle B\times F} * is defined using a continuous surjective map* * * * π * : * E * → * B * * * {\displaystyle \pi \colon E\to B} * that in small regions of E behaves just like a projection from corresponding regions of B × F to B. The map π, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. * In the trivial case, E is just B × F, and the map π is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles such as the tangent bundle of a manifold and more general vector bundles play an important role in differential geometry and differential topology, as do principal bundles. * Mappings between total spaces of fiber bundles that "commute" with the projection maps are known as bundle maps, and the class of fiber bundles forms a category with respect to such mappings. A bundle map from the base space itself (with the identity mapping as projection) to E is called a section of E. Fiber bundles can be specialized in a number of ways, the most common of which is requiring that the transitions between the local trivial patches lie in a certain topological group, known as the structure group, acting on the fiber F. |